How do you divide (3x^4 + 2x^3 - 11x^2 - 2x + 5)/(x^2 - 2)3x4+2x3−11x2−2x+5x2−2?
1 Answer
Use long division of the coefficients to find:
3x^4+2x^3-11x^2-2x+5 = (x^2-2)(3x^2+2x-5) + 2x-53x4+2x3−11x2−2x+5=(x2−2)(3x2+2x−5)+2x−5
That is:
(3x^4+2x^3-11x^2-2x+5)/(x^2-2) = 3x^2+2x-5 + (2x-5)/(x^2-2)3x4+2x3−11x2−2x+5x2−2=3x2+2x−5+2x−5x2−2
Explanation:
Long divide the coefficients, using a long division similar to division of integers:
Note that the divisor is
Choose the first term
Multiply the divisor by
3x^4+2x^3-11x^2-2x+5 = (x^2-2)(3x^2+2x-5) + 2x-53x4+2x3−11x2−2x+5=(x2−2)(3x2+2x−5)+2x−5