How do you divide #(-5-3i) -: (7-10i)#?
1 Answer
Jul 6, 2018
Explanation:
We can multiply both numerator and denominator by the complex conjugate
#(-5-3i)/(7-10i) = ((-5-3i)(7+10i))/((7-10i)(7+10i))#
#color(white)((-5-3i)/(7-10i)) = ((-5)(7)+(-5)(10i)+(-3i)(7)+(-3i)(10i))/((7)^2-(10i)^2)#
#color(white)((-5-3i)/(7-10i)) = (-35-50i-21i+30)/(49+100)#
#color(white)((-5-3i)/(7-10i)) = (-5-71i)/149#
#color(white)((-5-3i)/(7-10i)) = -5/149-71/149i#