How do you divide #(-7x^3-15x^2-24x-4)/(x-4) #?

1 Answer
Feb 4, 2018

#-7x^2-43x-196-788/(x-4)#

Explanation:

#"one way is to use the divisor as a factor in the numerator"#

#"consider the numerator"#

#color(red)(-7x^2)(x-4)color(magenta)(-28x^2)-15x^2-24x-4#

#=color(red)(-7x^2)(x-4)color(red)(-43x)(x-4)color(magenta)(-172x)-24x-4#

#=color(red)(-7x^2)(x-4)color(red)(-43x)(x-4)color(red)(-196)(x-4)color(magenta)(-784)-4#

#=color(red)(-7x^2)(x-4)color(red)(-43x)(x-4)color(red)(-196)(x-4)-788#

#"quotient "=color(red)(-7x^2-43x-196)," remainder "=-788#

#rArr(-7x^3-15x^2-24x-4)/(x-4)#

#=-7x^2-43x-196-788/(x-4)#