How do you divide #(-7x^3-5x^2-2x-4)/(x-4) #?

1 Answer
Jan 1, 2016

Long divide the coefficients to find:

#(-7x^3-5x^2-2x-4)/(x-4) = -7x^2-33x-134 - 540/(x-4)#

The quotient is #-7x^2-33x-134# with remainder #-540#

Explanation:

I like to long divide the coefficients like this:

enter image source here

The process is similar to long division of numbers.

In this particular example we find:

#(-7x^3-5x^2-2x-4)/(x-4) = -7x^2-33x-134 - 540/(x-4)#

That is #(-7x^3-5x^2-2x-4)/(x-4)# is #-7x^2-33x-134# with remainder #-540#.

Or if you prefer:

#-7x^3-5x^2-2x-4 = (-7x^2-33x-134)(x-4)-540#