How do you divide imaginary numbers?

1 Answer
Apr 25, 2018

(a+bi)/(c+di)=(ac+bd)/(c^2+d^2)+i(bc-ad)/(c^2+d^2)a+bic+di=ac+bdc2+d2+ibcadc2+d2

Explanation:

Suppose we wanted to determine

(a+bi)/(c+di)a+bic+di

We can multiply the numerator and denominator by the complex conjugate of the denominator. In this case the complex conjugate of the denominator is c-dicdi.

(a+bi)/(c+di)=((a+bi)(c-di))/((c+di)(c-di))a+bic+di=(a+bi)(cdi)(c+di)(cdi)

=(ac-adi+bci+bd)/(c^2-cdi+cdi+d^2)=acadi+bci+bdc2cdi+cdi+d2

=(ac+bd+(bc-ad)i)/(c^2+d^2)=ac+bd+(bcad)ic2+d2

=(ac+bd)/(c^2+d^2)+i(bc-ad)/(c^2+d^2)=ac+bdc2+d2+ibcadc2+d2