How do you divide #(x^2 - 3xy + 2y^2 + 3x - 6y - 8) / (x-y+4)#?
1 Answer
Nov 1, 2015
You can choose to end up with no
#(x^2-3xy+2y^2+3x-6y-8)/(x-y+4)#
Explanation:
Try to match the higher degree terms in the dividend with multiples of the divisor as follows:
#x(x-y+4) = x^2-xy+4x#
#-2y(x-y+4) = -2xy+2y^2-8y#
So:
#(x-2y)(x-y+4) = x^2-3xy+2y^2+4x-8y#
Then:
#-1(x-y+4) = -x+y-4#
or
#-2(x-y+4) = -2x+2y-8#
So we find:
#x^2-3xy+2y^2+3x-6y-8 = (x-2y-1)(x-y+4)-7y-4#
Or:
#x^2-3xy+2y^2+3x-6y-8 = (x-2y-2)(x-y+4)+x#
So no choice of quotient allows us to eliminate both
I suspect the