How do you divide #( x^3-12x^2+3x-4)/(x-2)#? Algebra Rational Equations and Functions Division of Polynomials 1 Answer José F. Jan 27, 2016 #x^2-10x-17-38/(x-2)# Explanation: #x^3-12x^2+3x-4 | (x-2)# #-x^3 +2x^2 color(white)(.............)|x^2-10x-17# #color(white)(....)-10x^2+3x-4# #color(white)(....)+10x^2-20x # #color(white)(................)-17x-4 # #color(white)(................)+17x-34 # #color(white)(...........................)-38 # So it is: #x^2-10x-17-38/(x-2)# Answer link Related questions What is an example of long division of polynomials? How do you do long division of polynomials with remainders? How do you divide #9x^2-16# by #3x+4#? How do you divide #\frac{x^2+2x-5}{x}#? How do you divide #\frac{x^2+3x+6}{x+1}#? How do you divide #\frac{x^4-2x}{8x+24}#? How do you divide: #(4x^2-10x-24)# divide by (2x+3)? How do you divide: #5a^2+6a-9# into #25a^4#? How do you simplify #(3m^22 + 27 mn - 12)/(3m)#? How do you simplify #(25-a^2) / (a^2 +a -30)#? See all questions in Division of Polynomials Impact of this question 1520 views around the world You can reuse this answer Creative Commons License