How do you divide #( x^3+3x^2+4x+12 )/(x^2+2x)#?

1 Answer
Jun 30, 2018

The remainder is #=2x+12# and the quotient is #=x+1#

Explanation:

Perform a long division

#color(white)(aaaa)##x^3+3x^2+4x+12##color(white)(aaaa)##|##x^2+2x#

#color(white)(aaaa)##x^3+2x^2##color(white)(aaaaaaaaaaaaa)##|##x+1#

#color(white)(aaaaa)##0+x^2+4x#

#color(white)(aaaaaaaa)##x^2+2x#

#color(white)(aaaaaaaaa)##0+2x+12#

The remainder is #=2x+12# and the quotient is #=x+1#

#(x^3+3x^2+4x+12)/(x^2+2x)=(x+1)+(2x+12)/(x^2+2x)#