How do you divide x3+4x27x6(x+1)(x+10)?

1 Answer

(x7)+60x+64x2+11x+10=(x7)+4(15x+16)(x+1)(x+10)

Explanation:

There are no factors of the numerator that can help us, and so we're left to do this via long division. Let's first expand the denominator:

(x+1)(x+10)=x2+11x+10

And now for the long division:

x2+11x+10x2+11x+10)x3+4x27x6¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯x3+4x27x6

x2 goes into x3 x times:

x2+11x+10x2+11x+10)x+4x27x6¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯x3+4x27x6
x2+11x+10x2+11x+10)x3+11x2+10x6¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯0x37x217x6

x2 goes into 7x2 7 times:

x2+11x+10x2+11x+10)x7x27x6¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯x3+4x27x6
x2+11x+10x2+11x+10)x3+11x2+10x6¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯0x37x217x6
x2+11x+10x2+11x+10)x37x277x70¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯0x3+0x2+60x+64

This gives us:

x3+4x27x6x2+11x+10=(x7)+60x+64x2+11x+10=(x7)+4(15x+16)(x+1)(x+10)