How do you divide #(x^3-8x^2-6) / (x-2)#?

1 Answer
Jun 24, 2018

The quotient is #=x^2-6x-12# and the remainder is #-30#

Explanation:

Perform a long division

#color(white)(aaaa)##x^3-8x^2+0x-6##color(white)(aaaa)##|##x-2#

#color(white)(aaaa)##x^3-2x^2##color(white)(aaaaaaaaaaaa)##|##x^2-6x-12#

#color(white)(aaaa)##0-6x^2+0x#

#color(white)(aaaaaa)##-6x^2+12x#

#color(white)(aaaaaaaaa)##0-12x-6#

#color(white)(aaaaaaaaaaa)##-12x+24#

#color(white)(aaaaaaaaaaaaaaa)##0-30#

The quotient is #=x^2-6x-12# and the remainder is #-30#

#(x^3-8x^2-6)/(x-2)=x^2-6x-12-30/(x-2)#