How do you divide #(x^4+2x^3+ 5 x^2+6x-32)/(x-4) #?

1 Answer
Jun 5, 2017

The remainder is #=456# and the quotient is #=x^3+6x^2+29x+122#

Explanation:

Let's perform the synthetic division

#color(white)(aaaa)##4##color(white)(aaaaa)##|##color(white)(aaaa)##1##color(white)(aaaaaa)##2##color(white)(aaaaaa)##5##color(white)(aaaaa)##6##color(white)(aaaaaaa)##-32#
#color(white)(aaaaaaaaaaaa)#_________

#color(white)(aaaa)##color(white)(aaaaaaa)##|##color(white)(aaaa)##color(white)(aaaaaa)##4##color(white)(aaaaaa)##24##color(white)(aaaa)##116##color(white)(aaaaaa)##488#
#color(white)(aaaaaaaaaaaa)#________

#color(white)(aaaa)##color(white)(aaaaaaa)##|##color(white)(aaaa)##1##color(white)(aaaaa)##6##color(white)(aaaaaa)##29##color(white)(aaaa)##122##color(white)(aaaaaa)##color(red)(456)#

#(x^4+2x^3+5x^2+6x-32)/(x-4)=(x^3+6x^2+29x+122)+(456)/(x-4)#

The remainder is #=456# and the quotient is #=x^3+6x^2+29x+122#