How do you divide ( x^4-2x^3-x)/(x(x+4))x42x3xx(x+4)?

1 Answer

(x^4-2x^3-x)/(x(x+4))=(x^3-2x^2-1)/(x+4)=color(red)(x^2-6x+24-97/(x+4))x42x3xx(x+4)=x32x21x+4=x26x+2497x+4

Explanation:

From the given (x^4-2x^3-x)/(x(x+4))x42x3xx(x+4)

We can reduce the degree of the dividend and the divisor

(x^4-2x^3-x)/(x(x+4))x42x3xx(x+4)

factor the common monomial x

(x(x^3-2x^2-1))/(x(x+4))x(x32x21)x(x+4)

(cancelx(x^3-2x^2-1))/(cancelx(x+4))

(x^3-2x^2-1)/(x+4)

Perform long division
" " " " ""underline(x^2-6x+24" " " " " ")
x+4|~x^3-2x^2+0*x-1
"" " " " " underline(x^3+4x^2" " " " "" " " " "" " " " ")
" " " " " " " "-6x^2+0*x-1
" " " " " " " "underline(-6x^2-24x" " " " "" " " " ")
" " " " " " " " " " " " " " "24x-1
" " " " " " " " " " " " " " "underline(24x+96)
" " " " " " " " " " " " " " " " " " -97larrremainder

We write our answer this way

("Dividend")/("Divisor")="Quotient"+("Remainder")/("Divisor")

(x^4-2x^3-x)/(x(x+4))=x^2-6x+24-97/(x+4)

God bless....I hope the explanation is useful.