How do you do definite integrals with substitution?

1 Answer
Sep 25, 2014

The only thing different from indefinite integral is that you will have to convert the original lower and upper limits into the new ones.

Let us evaluate the definite integral below.

int_0^2 2xe^{x^2+1} dx202xex2+1dx

Let u=x^2+1u=x2+1.
Rightarrow {du}/{dx}=2x Rightarrow du=2x dududx=2xdu=2xdu

When x=0x=0, u=(0)^2+1=1u=(0)2+1=1
When x=2x=2, u=(2)^2+1=5u=(2)2+1=5

If x goes from 0 to 2, then u goes from 1 to 5.

By Substitution,

int_0^2 2xe^{x^2+1} dx=int_1^5 e^u du=[e^u]_1^5=e^5-e202xex2+1dx=51eudu=[eu]51=e5e