How do you find the integral #int_0^1x*e^(-x^2)dx# ?

1 Answer
Sep 22, 2014

We begin by making a substitution.

Let #u=-x^2#

#intxe^udx#

#du=-2xdx#

#(du)/(-2)=(-2xdx)/(-2)#

#(du)/(-2)=xdx#

#(-1)/2*du=xdx#

#inte^uxdx#, Notice that xdx can be replaced by #(-1)/2*du#

#inte^u(-1)/2du#, Move the constant to the front of the integral

#(-1)/2inte^udu#

After integration look back to the original substitution to find the value for #u#. In this case that value is #-x^2#.

I switched back to #-x^2# so that I could use the original boundaries.

#(-1)/2[e^(-x^2)]_0^1=(-1)/2[e^(-1)-e^0]=(-1)/2[1/e-1]=(-1)/(2e)+1/2=#

#=0.31606#