How do you evaluate #2x − 4y + 3x^2 + 7y − 16x#?

1 Answer
May 2, 2016

see explanation
Simplified version #->color(blue)(+y=-x^2+1/3x)"#

Explanation:

#color(magenta)("Depends on what is meant by 'evaluate'")#

#color(blue)("Simplifying the expression")#

Collecting like terms:

#(2x-16x)+(7y-4y)+(+3x^2)#

#-14x+3y+3x^2#

Order by degree (power that #x# is taken to)

#3x^2-14x+3y#

Set as equal to zero

#3x^2-14x+3y=0#

Subtract #3y# from both sides

#-3y=3x^2-14x#

Divide both sides by 3

#-y=3/3x^2-14/3 x#

Multiply by (-1)

#color(blue)(+y=-x^2+1/3x)" "color(magenta)("This may be as far as you need to go!")#
'~~~~~~~~~~~~~~~~~~~~~~~~
#color(blue)("Determine the x-intercepts")#

At #x=0" "->" "y=-(0)^2+1/3(0) => y= 0#

Suppose we set #x=1/3#

Then #y=x^2+1/3x" "->" "y=0=(-1/3xx1/3)+(1/3xx1/3)#

#color(blue)(=> x_("intercepts")-> x= 0" and "x=1/3)#
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(blue)("Determine y intercept")#

Given that one of the x intercepts is at #x=0#
Then at #x=0# it is also the case that #y=0#

#=>color(blue)( y_("intercept")->y=0)#
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(blue)("Determine vertex")#

Consider the standard form #" "y=ax^2+bx+c#

Write this as#" "y=a(x^2+b/ax)+c#

Then #x_("vertex")= (-1/2)xxb/a#

In your case #a=-1#

so #color(blue)(x_("vertex")=(-1/2)xxb -> (-1/2)xx-1/3 =+1/6)#

Substitute #x=1/6" in "y=-x^2+1/3x#

#color(blue)(=>y_("vertex")=-(1/6)^2+(1/3xx1/6)=1/18-1/36 = 1/36)#

#color(blue)("Vertex "->" "(x,y)=(1/6,1/36))#
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Tony B