How do you evaluate #arc cos (-.3090)#?

1 Answer
Jul 3, 2016

If by #-0.3090# we mean #(1-\sqrt{5})/4#, then the result is #(3\pi)/5#.

Explanation:

The number #-0.3090# matches #(1-\sqrt{5})/4# to all four reported significant digits, and it is assumed here that #(1-\sqrt{5})/4# is the intended argument.

In https://socratic.org/questions/how-do-i-evaluate-cos-pi-5-without-using-a-calculator#225722 it is shown that

#cos(\pi/5)=(\sqrt{5}+1)/4#
#cos({2\pi}/5)=cos(\pi/5)-(1/2)=color(blue)((\sqrt{5}-1)/4)#

The blue figure is the negative of the given argument. So:

#arccos((1-\sqrt{5})/4)#
#=\pi-arccos((\sqrt{5}-1)/4)#
#=\pi-{2\pi}/5={3\pi}/5#.