How do you evaluate cos A = 0.5878cosA=0.5878?

1 Answer
Oct 2, 2016

If by 0.58780.5878 you mean

\sqrt{{5-\sqrt{5}}/8}=0.5877852523558=0.5877852523

(to ten decimal places), then the answer is A={3\pi}/{10}A=3π10 radians or 54°.

Explanation:

In this answer https://socratic.org/questions/how-do-i-evaluate-cos-pi-5-without-using-a-calculator#225722 it is proved that

cos(\pi/5)={\sqrt{5}+1}/4.

Then

sin({3\pi}/{10})={\sqrt{5}+1}/4

because {3\pi}/{10}+\pi/5=\pi/2.

Then

cos^2({3\pi}/{10})=1-sin^2({3\pi}/{10})=1-({\sqrt{5}+1}/4)^2={5-\sqrt{5}}/8.