How do you evaluate log_2(log_9 3)= log_x6log2(log93)=logx6?

1 Answer
Apr 21, 2016

x=1/6x=16

Explanation:

log_2(log_9 3)=log_x 6log2(log93)=logx6

log_9 3=(log_3 3)/(log_3 9)=(cancel(log_3 3))/(2cancel(log_3 3))=1/2

log_2 (1/2)=log_x 6

log_2 1-log_2 2=log_x 6

log_2 1=0" ;" log_2 2=1

0-1=log_x 6

log_x 6=-1

x^-1=6

1/x=6

x=1/6