How do you evaluate the integral #int (x-1)/(x+1)dx#?

1 Answer
Feb 6, 2017

#int (x-1) / (x+1) dx = x -2lnabs(x+1) +C#

Explanation:

Split the integrand function:

#int (x-1) / (x+1) dx = int (x+1-2) / (x+1) dx = int (1-2/(x+1))dx#

Using the linearity of the integral:

#int (x-1) / (x+1) dx = int dx -2 int dx/(x+1)#

These are standard integrals that we can solve directly:

#int (x-1) / (x+1) dx = x -2lnabs(x+1) +C#