How do you expand #(3a-b)^4 # using Pascal’s Triangle? Precalculus The Binomial Theorem Pascal's Triangle and Binomial Expansion 1 Answer Sihan Tawsik Feb 3, 2016 #81a^4-108a^3b+54a^2b^2-12ab^3+b^4# Explanation: from pascal's triangle we can see, #(1+x)^0#---------------------#1# #(1+x)^1#---------------------#1# #1# #(1+x)^2#--------------------#1# #2# #1# #(1+x)^3#--------------------#1# #3# #3# #1# #(1+x)^4#--------------------#1# #4# #6# #4# #1# so, #(3a-b)^4=1*(3a)^4-4*(3a)^3b+6*(3a)^2b^2-4*3ab^3+1*b^4# #=81a^4-108a^3b+54a^2b^2-12ab^3+b^4# Answer link Related questions What is Pascal's triangle? How do I find the #n#th row of Pascal's triangle? How does Pascal's triangle relate to binomial expansion? How do I find a coefficient using Pascal's triangle? How do I use Pascal's triangle to expand #(2x + y)^4#? How do I use Pascal's triangle to expand #(3a + b)^4#? How do I use Pascal's triangle to expand #(x + 2)^5#? How do I use Pascal's triangle to expand #(x - 1)^5#? How do I use Pascal's triangle to expand a binomial? How do I use Pascal's triangle to expand the binomial #(a-b)^6#? See all questions in Pascal's Triangle and Binomial Expansion Impact of this question 2618 views around the world You can reuse this answer Creative Commons License