How do you expand the binomial #(2x-y^3)^7# using the binomial theorem? Precalculus The Binomial Theorem Pascal's Triangle and Binomial Expansion 1 Answer Somebody N. Mar 30, 2018 #128x^7-448x^6y^3+672x^5y^6-560x^4y^9+280x^3y^12-84x^2y^15# #+14xy^18-y^21# Explanation: For the expansion of #(x+y)^n# we have: #sum_(r=0)^n((n),(r))x^(n-r)y^r# Where: #((n),(r))=color(white)(0)^nC_(r)=(n!)/((r!(n-r)!)# #(2x-y^3)^7# #((7),(0))(2x)^7(-y^3)^0+((7),(1))(2x)^6(-y^3)^1+((7),(2))(2x)^5(-y^3)^2# #+((7),(3))(2x)^4(-y^3)^3+((7),(4))(2x)^3(-y^3)^4+((7),(5))(2x)^2(-y^3)^5# #+((7),(6))(2x)^1(-y^3)^6+((7),(7))(2x)^0(-y^3)^7# Using # \ \ \ (n!)/((r!(n-r)!)# #128x^7-448x^6y^3+672x^5y^6-560x^4y^9+280x^3y^12-84x^2y^15# #+14xy^18-y^21# Answer link Related questions What is Pascal's triangle? How do I find the #n#th row of Pascal's triangle? How does Pascal's triangle relate to binomial expansion? How do I find a coefficient using Pascal's triangle? How do I use Pascal's triangle to expand #(2x + y)^4#? How do I use Pascal's triangle to expand #(3a + b)^4#? How do I use Pascal's triangle to expand #(x + 2)^5#? How do I use Pascal's triangle to expand #(x - 1)^5#? How do I use Pascal's triangle to expand a binomial? How do I use Pascal's triangle to expand the binomial #(a-b)^6#? See all questions in Pascal's Triangle and Binomial Expansion Impact of this question 3845 views around the world You can reuse this answer Creative Commons License