How do you express as a single logarithm & simplify (1/2)log_a *x + 4log_a *y - 3log_a *x?

1 Answer
Jul 31, 2015

(1/2)log_a(x)+4log_a(y)-3log_a(x)=log_a(x^(-5/2)y^4)

Explanation:

To simplify this expression, you need to use the following logarithm properties:

log(a*b)=log(a)+log(b) (1)
log(a/b)=log(a)-log(b) (2)
log(a^b)=blog(a) (3)

Using the property (3), you have:

(1/2)log_a(x)+4log_a(y)-3log_a(x)=log_a(x^(1/2))+log_a(y^4)-log_a(x^3)

Then, using the properties (1) and (2), you have:

log_a(x^(1/2))+log_a(y^4)-log_a(x^3)=log_a((x^(1/2)y^4)/x^3)

Then, you only need to put all the powers of x
together:

log_a((x^(1/2)y^4)/x^3)=log_a(x^(-5/2)y^4)