Functions with Base b
Key Questions
-
Log/Exp Inverse Properties
b^{log_b x}=xblogbx=x log_b b^x=xlogbbx=x Other Log Properties
log_b(xcdot y)=log_b x+log_b ylogb(x⋅y)=logbx+logby log_b(x/y)=log_b x-log_b ylogb(xy)=logbx−logby log_b x^r=r log_b xlogbxr=rlogbx
I hope that this was helpful.
-
Answer:
log_(a)(m^(n)) = n log_(a)(m)loga(mn)=nloga(m) Explanation:
Consider the logarithmic number
log_(a)(m) = xloga(m)=x :log_(a)(m) = xloga(m)=x Using the laws of logarithms:
=> m = a^(x)⇒m=ax Let's raise both sides of the equation to
nn th power:=> m^(n) = (a^(x))^(n)⇒mn=(ax)n Using the laws of exponents:
=> m^(n) = a^(xn)⇒mn=axn Let's separate
xnxn fromaa :=> log_(a)(m^(n)) = xn⇒loga(mn)=xn Now, we know that
log_(a)(m) = xloga(m)=x .Let's substitute this in for
xx :=> log_(a)(m^(n)) = n log_(a)(m)⇒loga(mn)=nloga(m) -
Answer:
The reflection of the exponential function on the axis
y=xy=x Explanation:
Logarithms are the inverse of an exponential function, so for
y=a^xy=ax , the log function would bey=log_axy=logax .So, the log function tell you what power
aa has to be raised to, to getxx .Graph of
lnxlnx :
graph{ln(x) [-10, 10, -5, 5]}Graph of
e^xex :
graph{e^x [-10, 10, -5, 5]}