How do you solve log_6 (2x-1) + log_6 x = 2log6(2x1)+log6x=2?

1 Answer
Jun 24, 2016

Solution is x=9/2x=92

Explanation:

log_6(2x-1)+log_6x=2log6(2x1)+log6x=2

hArrlog_6x(2x-1)=2log_6(6)=log_6(36)log6x(2x1)=2log6(6)=log6(36)

Hence x(2x-1)=36x(2x1)=36 or 2x^2-x-36=02x2x36=0

Now splitting the middle term

2x^2-9x+8x-36=02x29x+8x36=0 or

x(2x-9)+4(2x-9)=0x(2x9)+4(2x9)=0 or

(x+4)(2x-9)=0(x+4)(2x9)=0

i.e. either x+4=0x+4=0 i.e. x=-4x=4 (but this is out of domain)

or 2x-9=02x9=0 i.e. x=9/2x=92

Hence, solution is x=9/2x=92