How do you express cos theta - cos^2 theta + cot^2 theta cosθcos2θ+cot2θ in terms of sin theta sinθ?

1 Answer
Jan 15, 2016

(2sin^4theta-4sin^2theta+sinthetasin2theta+2)/(2sin^2theta)2sin4θ4sin2θ+sinθsin2θ+22sin2θ

Explanation:

Write in terms of sinthetasinθ and costhetacosθ.

=costheta-cos^2theta+cos^2theta/sin^2theta=cosθcos2θ+cos2θsin2θ

Find a common denominator.

=(costhetasin^2theta)/sin^2theta-(cos^2thetasin^2theta)/sin^2theta+cos^2theta/sin^2theta=cosθsin2θsin2θcos2θsin2θsin2θ+cos2θsin2θ

Combine.

=(costhetasin^2theta-cos^2thetasin^2theta+cos^2theta)/sin^2theta=cosθsin2θcos2θsin2θ+cos2θsin2θ

The following simplification may seem unecessary, but is actually relevant. Its purpose will become clear in the following step.

=(sintheta(color(blue)(costhetasintheta))-color(green)(cos^2theta)sin^2theta+color(green)(cos^2theta))/sin^2theta=sinθ(cosθsinθ)cos2θsin2θ+cos2θsin2θ

Use the following identities:

  • color(green)(cos^2theta=1-sin^2thetacos2θ=1sin2θ
  • 2costhetasintheta=sin2theta=>color(blue)(costhetasintheta=(sin2theta)/22cosθsinθ=sin2θcosθsinθ=sin2θ2

=(sintheta((sin2theta)/2)-(1-sin^2theta)sin^2theta+(1-sin^2theta))/sin^2theta=sinθ(sin2θ2)(1sin2θ)sin2θ+(1sin2θ)sin2θ

=((sinthetasin2theta)/2-sin^2theta+sin^4theta+1-sin^2theta)/sin^2theta=sinθsin2θ2sin2θ+sin4θ+1sin2θsin2θ

=((sinthetasin2theta)/2-2sin^2theta+sin^4theta+1)/sin^2theta=sinθsin2θ22sin2θ+sin4θ+1sin2θ

=(2sin^4theta-4sin^2theta+sinthetasin2theta+2)/(2sin^2theta)=2sin4θ4sin2θ+sinθsin2θ+22sin2θ