How do you express cos theta - cos^2 theta + cot^2 theta cosθ−cos2θ+cot2θ in terms of sin theta sinθ?
1 Answer
Explanation:
Write in terms of
=costheta-cos^2theta+cos^2theta/sin^2theta=cosθ−cos2θ+cos2θsin2θ
Find a common denominator.
=(costhetasin^2theta)/sin^2theta-(cos^2thetasin^2theta)/sin^2theta+cos^2theta/sin^2theta=cosθsin2θsin2θ−cos2θsin2θsin2θ+cos2θsin2θ
Combine.
=(costhetasin^2theta-cos^2thetasin^2theta+cos^2theta)/sin^2theta=cosθsin2θ−cos2θsin2θ+cos2θsin2θ
The following simplification may seem unecessary, but is actually relevant. Its purpose will become clear in the following step.
=(sintheta(color(blue)(costhetasintheta))-color(green)(cos^2theta)sin^2theta+color(green)(cos^2theta))/sin^2theta=sinθ(cosθsinθ)−cos2θsin2θ+cos2θsin2θ
Use the following identities:
color(green)(cos^2theta=1-sin^2thetacos2θ=1−sin2θ 2costhetasintheta=sin2theta=>color(blue)(costhetasintheta=(sin2theta)/22cosθsinθ=sin2θ⇒cosθsinθ=sin2θ2
=(sintheta((sin2theta)/2)-(1-sin^2theta)sin^2theta+(1-sin^2theta))/sin^2theta=sinθ(sin2θ2)−(1−sin2θ)sin2θ+(1−sin2θ)sin2θ
=((sinthetasin2theta)/2-sin^2theta+sin^4theta+1-sin^2theta)/sin^2theta=sinθsin2θ2−sin2θ+sin4θ+1−sin2θsin2θ
=((sinthetasin2theta)/2-2sin^2theta+sin^4theta+1)/sin^2theta=sinθsin2θ2−2sin2θ+sin4θ+1sin2θ
=(2sin^4theta-4sin^2theta+sinthetasin2theta+2)/(2sin^2theta)=2sin4θ−4sin2θ+sinθsin2θ+22sin2θ