How do you express cos theta - cos^2 theta + cot theta in terms of sin theta ?

1 Answer
Apr 18, 2018

color(blue)(=>(sqrt(1-sin^2 theta) / sin theta) * ( sin theta - sin(2theta) / 2 - 1)

Explanation:

cos theta - cos^@ theta - cot theta

![https://www.onlinemathlearning.com/http://trigonometric-identities.html](https://useruploads.socratic.org/n2blswKSWms5UU0QoTY5_trigonometric%20identities.png)

=>cos theta - cos^2 theta - (cos theta / sin theta)

=>cos theta * ( 1 - cos theta - (1/sin theta))

=>cos theta (sin theta - sin theta cos theta - 1 ) / sin theta

We will use the following identities to convert into sine form.

color(crimson)(sin 2 theta = 2 sin theta cos theta, cos^2 theta = 1 - sin^2 theta

color(blue)(=>(sqrt(1-sin^2 theta) / sin theta) * ( sin theta - sin(2theta) / 2 - 1)