How do you express cosθcsc2θ+secθ in terms of sinθ?

1 Answer
Feb 2, 2016

2sin2θsin4θ1sin2θsin2θ1sin2θ

Explanation:

Using trigonometric relationships we can say

cosθcsc2θ+secθ
=cosθ1sin2θ+1cosθ
=cos2θ+1cosθ1sin2θ

We know that cos2θ=1sin2θ

Substituting this into tthe expression gives
1sin2θ+1cosθ1sin2θ

=sin2θ(2sin2θ)cosθcosθsin2θ

cosθ=1sin2θ

Substituting again gives

2sin2θsin4θ1sin2θsin2θ1sin2θ