How do you express sin^2 theta - sec^2 theta + tan^2 theta sin2θsec2θ+tan2θ in terms of cos theta cosθ?

1 Answer
Jun 23, 2016

-cos^2xcos2x

Explanation:

sin^2x=1-cos^2xsin2x=1cos2x

sec^2x=1/cos^2xsec2x=1cos2x

tan^2x=(1-cos^2x)/cos^2xtan2x=1cos2xcos2x

so, by substituting, you have:

1-cos^2x-1/cos^2x+(1-cos^2x)/cos^2x1cos2x1cos2x+1cos2xcos2x

1-cos^2x+(cancel(-1)cancel(+1)-cos^2x)/cos^2x

1-cos^2x-1

-cos^2x