How do you express #sin^2 theta - tan theta + sec^2 theta # in terms of #cos theta #?

1 Answer
Mar 14, 2016

#1-cos^2theta-sqrt(1-cos^2theta)/costheta+1/cos^2theta#

Explanation:

For expressing #sin^2theta-tantheta+sec^2theta# in terms of #costheta#, let us the identities

#sin^2theta=1-cos^2theta# or #sintheta=sqrt(1-cos^2theta)# and

#tantheta=sintheta/costheta# and #sec^2theta=1/cos^2theta#,

Using these

#sin^2theta-tantheta+sec^2theta#

= #1-cos^2theta-sintheta/costheta+1/cos^2theta#

= #1-cos^2theta-sqrt(1-cos^2theta)/costheta+1/cos^2theta#