How do you factor and simplify #tan^2x-cot^2x#?

1 Answer
Nov 29, 2016

#-(4(sin x - cos x)(sin x + cos x))/(sin^2 2x)# or
-4cot 2x.csc 2x

Explanation:

#tan^2 x - cot^2 x = sin^2 x/(cos^2 x) - cos^2 x/(sin^2 x) = #
#= (sin^4 x - cos^4 x)/(sin^2 x.cos ^2 x)= #
Since:
#(a) = (sin^4 x - cos^4 x) = (sin ^2 x - cos^2 x)(sin^2 x + cos^2 x) = #
#= (sin x - cos x)(sin x + cos x)# , and
#(b) = sin^2 x.cos^2 x = (1/4)sin^2 2x#,
There for:
#tan^2 x - cot^2 x = ((a))/((b)) = (4(sin x - cos x)(sin x + cos x))/(sin^2 2x)#

There is another answer for simplification:
Since (sin^2 x - cos^2 x) = - cos 2x, then,
#((a))/((b)) = - (4cos 2x)/(sin^2 2x) = - (4 cot 2x)(1/(sin 2x)) =#
#- 4cot 2x.csc 2x# #