How do you find all #(cos2x)/(sin3x-sinx)# in the interval #[0,2pi)#?

1 Answer
Jul 28, 2018

Graph reads y values, #x in [ 0, 2pi ]#
sans indeterminate holes at #x = pi/4, 3/4pi, 5/4pi and 7/4pi #, and
asymptotic #x = 0, pi and 2pi#

Explanation:

#y = (cos 2x)/(sin 3x - sin x)#

#= (cos 2x)/(2 cos(1/2(3x + x ))sin(1/2( 3x - x )))#

#=1/2 (cos 2x)/(cos 2x)(1/sinx), #

#= 1/2 csc x, cos 2x ne 0 #
#rArr 2x ne (2k + 1 ) (pi/2), k = 0, +-1, +-2, +-3, ...#

#x ne (2k + 1 )pi/4 and# asymptotic #x ne kpi#

Note that

#y = 1/2 csc x notin 1/2 ( - 1, 1 ) = ( - 1/2, 1/2 )#

The graph reads y. sans y at duly marked #x =0, pi/4, 3/4pi,#

#pi, 5/4pi, 7/4pi, 2pi#. .
graph{(2y sin x +1)(x-pi/4+0.001y)(x+0.001y)(x-pi+0.001y) (x-3pi/4+0.001y)(x-5pi/4+0.001y)(x-2pi+0.001y)(x-7pi/4+0.001y)= 0[-0.2 8 -2 2]}