How do you find all the zeros of 2x3+9x2+6x−8?
1 Answer
Aug 13, 2016
This cubic has zeros
Explanation:
f(x)=2x3+9x2+6x−8
By the rational roots theorem, any rational zeros of
That means that the only possible rational zeros are:
±12,±1,±2,±4,±8
We find:
f(−2)=2(−8)+9(4)+6(−2)−8=−16+36−12−8=0
So
2x3+9x2+6x−8=(x+2)(2x2+5x−4)
The remaining quadratic is in the form
We can solve this using the quadratic formula:
x=−b±√b2−4ac2a
=−5±√52−4(2)(−4)2⋅2
=14(−5±√25+32)
=14(−5±√57)