How do you find all the zeros of 4x^3-2x^2-x+64x3−2x2−x+6?
1 Answer
Use Cardano's method to find Real zero:
x_1 = 1/6(1+root(3)((-313+3sqrt(10857))/2) + root(3)((-313-3sqrt(10857))/2))x1=16⎛⎝1+3√−313+3√108572+3√−313−3√108572⎞⎠
and related Complex zeros.
Explanation:
Discriminant
The discriminant
Delta = b^2c^2-4ac^3-4b^3d-27a^2d^2+18abcd
In our example,
Delta = 4+16+192-15552+864=-14476
Since
Tschirnhaus transformation
To simplify the problem, eliminate any square term using a linear substitution. This is a simple form of what is called a Tschirnhaus transformation. To reduce the amount of arithmetic involving fractions, first multiply by
54 f(x) = 216x^3-108x^2-54x+324
=(6x-1)^3-12(6x-1)+313
=t^3-12t+313
where
Cardano's method
To solve
u^3+v^3+3(uv-4)(u+v)+313 = 0
To eliminate the term in
u^3+64/u^3+313 = 0
Multiply through by
(u^3)^2+313(u^3)+64 = 0
Using the quadratic formula, we find:
u^3 = (-313+-sqrt(313^2-(4*1*64)))/(2*1)
=(-313+-sqrt(97969-256))/2
=(-313+-sqrt(97713))/2
=(-313+-3sqrt(10857))/2
Since these roots are Real and the derivation was symmetric in
t_1 = root(3)((-313+3sqrt(10857))/2) + root(3)((-313-3sqrt(10857))/2)
and related Complex roots:
t_2 = omega root(3)((-313+3sqrt(10857))/2) + omega^2 root(3)((-313-3sqrt(10857))/2)
t_3 = omega^2 root(3)((-313+3sqrt(10857))/2) + omega root(3)((-313-3sqrt(10857))/2)
where
Then
x_1 = 1/6(1+root(3)((-313+3sqrt(10857))/2) + root(3)((-313-3sqrt(10857))/2))
x_2 = 1/6(1+omega root(3)((-313+3sqrt(10857))/2) + omega^2 root(3)((-313-3sqrt(10857))/2))
x_3 = 1/6(1+omega^2 root(3)((-313+3sqrt(10857))/2) + omega root(3)((-313-3sqrt(10857))/2))