How do you find all the zeros of f(x) = 5x^4 - x^2 + 2f(x)=5x4x2+2?

2 Answers
Jul 9, 2016

x = +-(sqrt((2sqrt(10)+1)/20)) +- (sqrt((2sqrt(10)-1)/20))ix=±210+120±210120i

Explanation:

Since f(x)f(x) has no odd terms, we could treat it as a quadratic in x^2x2, but the resulting quadratic has negative discriminant:

Delta = (-1)^2-4(5)(2) = 1-40 = -39

As a result it has only Complex zeros, of which we would then want to find square roots. This is a possible approach, but there is an alternative one...

Note that:

(a^2-kab+b^2)(a^2+kab+b^2) = a^4 + (2-k^2)a^2b^2 + b^4

Let:

a = root(4)(5)x

b = root(4)(2)

Then:

a^4 + (2-k^2)a^2b^2 + b^4=5x^4+(2-k^2)sqrt(10)x^2+2

If we let:

k = sqrt((20+sqrt(10))/10)

Then:

(2-k^2)sqrt(10) = (2-(20+sqrt(10))/10)sqrt(10) = -1

And:

kab = sqrt((20+sqrt(10))/10)root(4)(10)x = sqrt((20+sqrt(10))/10*sqrt(10)) = sqrt(2sqrt(10)+1)

So:

f(x) = (a^2-kab+b^2)(a^2+kab+b^2)

=(sqrt(5)x^2-(sqrt(2sqrt(10)+1))x+sqrt(2))(sqrt(5)x^2+(sqrt(2sqrt(10)+1))x+sqrt(2))

Then the zeros of these quadratic factors are given by the quadratic formula as:

x = (+-sqrt(2sqrt(10)+1)+-sqrt((2sqrt(10)+1)-4sqrt(10)))/(2sqrt(5))

=+-(sqrt((2sqrt(10)+1)/20)) +- (sqrt((2sqrt(10)-1)/20))i

Jul 9, 2016

x=+-(sqrt((2sqrt(10)+1)/20)) +- (sqrt((2sqrt(10)-1)/20))i

Explanation:

f(x) = 5x^4-x^2+2

I will use the result I derived for another question (see https://socratic.org/s/aw38evei), that the square roots of a+-bi are:

+-(sqrt((sqrt(a^2+b^2)+a)/2)) +- (sqrt((sqrt(a^2+b^2)-a)/2))i

First treat f(x) as a quadratic in x^2 and use the quadratic formula to find:

x^2=(1+-sqrt((-1)^2-4(5)(2)))/(2*5) = (1+-sqrt(-39))/10 = 1/10+-sqrt(39)/10i

Let a=1/10 and b=sqrt(39)/10

Then:

sqrt(a^2+b^2) = sqrt(1/100+39/100) = sqrt(40/100) = (2sqrt(10))/10

So the square roots of a+bi are:

+-(sqrt((sqrt(a^2+b^2)+a)/2)) +- (sqrt((sqrt(a^2+b^2)-a)/2))i

=+-(sqrt(((2sqrt(10))/10+1/10)/2)) +- (sqrt(((2sqrt(10))/10-1/10)/2))i

=+-(sqrt((2sqrt(10)+1)/20)) +- (sqrt((2sqrt(10)-1)/20))i

These are the zeros of our quartic.