How do you find all the zeros of f(x) = -9x^3 + x^2 + 4x - 3f(x)=−9x3+x2+4x−3?
1 Answer
Use Cardano's method to find Real zero:
x_1 = 1/27(1+root(3)((6235+27sqrt(46221))/2)+root(3)((6235-27sqrt(46221))/2))x1=127⎛⎝1+3√6235+27√462212+3√6235−27√462212⎞⎠
and related Complex zeros.
Explanation:
f(x) = -9x^3+x^2+4x-3f(x)=−9x3+x2+4x−3
Descriminant
The discriminant
Delta = b^2c^2-4ac^3-4b^3d-27a^2d^2+18abcd
In our example,
Delta = 16+2304+12-19683+1944 = -15407
Since
Tschirnhaus transformation
To make the task of solving the cubic simpler, we make the cubic simpler using a linear substitution known as a Tschirnhaus transformation.
0=-2187f(x)=19683x^3-2187x^2-8748x+6561
=(27x-1)^3-327(27x-1)+6235
=t^3-327t+6235
where
Cardano's method
We want to solve:
t^3-327t+6235=0
Let
Then:
u^3+v^3+3(uv-109)(u+v)+6235=0
Add the constraint
u^3+1295029/u^3+6235=0
Multiply through by
(u^3)^2+6235(u^3)+1295029=0
Use the quadratic formula to find:
u^3=(-6235+-sqrt((6235)^2-4(1)(1295029)))/(2*1)
=(6235+-sqrt(38875225-5180116))/2
=(6235+-sqrt(33695109))/2
=(6235+-27sqrt(46221))/2
Since this is Real and the derivation is symmetric in
t_1=root(3)((6235+27sqrt(46221))/2)+root(3)((6235-27sqrt(46221))/2)
and related Complex roots:
t_2=omega root(3)((6235+27sqrt(46221))/2)+omega^2 root(3)((6235-27sqrt(46221))/2)
t_3=omega^2 root(3)((6235+27sqrt(46221))/2)+omega root(3)((6235-27sqrt(46221))/2)
where
Now
x_1 = 1/27(1+root(3)((6235+27sqrt(46221))/2)+root(3)((6235-27sqrt(46221))/2))
x_2 = 1/27(1+omega root(3)((6235+27sqrt(46221))/2)+omega^2 root(3)((6235-27sqrt(46221))/2))
x_3 = 1/27(1+omega^2 root(3)((6235+27sqrt(46221))/2)+omega root(3)((6235-27sqrt(46221))/2))