How do you find all the zeros of f(x) = -9x^3 + x^2 + 4x - 3f(x)=9x3+x2+4x3?

1 Answer
Aug 16, 2016

Use Cardano's method to find Real zero:

x_1 = 1/27(1+root(3)((6235+27sqrt(46221))/2)+root(3)((6235-27sqrt(46221))/2))x1=1271+36235+27462212+3623527462212

and related Complex zeros.

Explanation:

color(white)()

f(x) = -9x^3+x^2+4x-3f(x)=9x3+x2+4x3

color(white)()
Descriminant

The discriminant Delta of a cubic polynomial in the form ax^3+bx^2+cx+d is given by the formula:

Delta = b^2c^2-4ac^3-4b^3d-27a^2d^2+18abcd

In our example, a=-9, b=1, c=4 and d=-3, so we find:

Delta = 16+2304+12-19683+1944 = -15407

Since Delta < 0 this cubic has 1 Real zero and 2 non-Real Complex zeros, which are Complex conjugates of one another.

color(white)()
Tschirnhaus transformation

To make the task of solving the cubic simpler, we make the cubic simpler using a linear substitution known as a Tschirnhaus transformation.

0=-2187f(x)=19683x^3-2187x^2-8748x+6561

=(27x-1)^3-327(27x-1)+6235

=t^3-327t+6235

where t=(27x-1)

color(white)()
Cardano's method

We want to solve:

t^3-327t+6235=0

Let t=u+v.

Then:

u^3+v^3+3(uv-109)(u+v)+6235=0

Add the constraint v=109/u to eliminate the (u+v) term and get:

u^3+1295029/u^3+6235=0

Multiply through by u^3 and rearrange slightly to get:

(u^3)^2+6235(u^3)+1295029=0

Use the quadratic formula to find:

u^3=(-6235+-sqrt((6235)^2-4(1)(1295029)))/(2*1)

=(6235+-sqrt(38875225-5180116))/2

=(6235+-sqrt(33695109))/2

=(6235+-27sqrt(46221))/2

Since this is Real and the derivation is symmetric in u and v, we can use one of these roots for u^3 and the other for v^3 to find Real root:

t_1=root(3)((6235+27sqrt(46221))/2)+root(3)((6235-27sqrt(46221))/2)

and related Complex roots:

t_2=omega root(3)((6235+27sqrt(46221))/2)+omega^2 root(3)((6235-27sqrt(46221))/2)

t_3=omega^2 root(3)((6235+27sqrt(46221))/2)+omega root(3)((6235-27sqrt(46221))/2)

where omega=-1/2+sqrt(3)/2i is the primitive Complex cube root of 1.

Now x=1/27(1+t). So the zeros of our original cubic are:

x_1 = 1/27(1+root(3)((6235+27sqrt(46221))/2)+root(3)((6235-27sqrt(46221))/2))

x_2 = 1/27(1+omega root(3)((6235+27sqrt(46221))/2)+omega^2 root(3)((6235-27sqrt(46221))/2))

x_3 = 1/27(1+omega^2 root(3)((6235+27sqrt(46221))/2)+omega root(3)((6235-27sqrt(46221))/2))