How do you find all the zeros of f(x)=x^3+3x^2-5x+8f(x)=x3+3x25x+8?

1 Answer
Jul 16, 2016

Use Cardano's method to find Real zero:

x_1 = 1/3(-3+root(3)((-405+3sqrt(12081))/2) + root(3)((-405-3sqrt(12081))/2))x1=133+3405+3120812+34053120812

and related Complex zeros.

Explanation:

f(x) = x^3+3x^2-5x+8f(x)=x3+3x25x+8

From the rational root theorem we can deduce that the only possible rational zeros are:

+-1, +-2, +-4, +-8±1,±2,±4,±8

None of these work, so there are no rational zeros.

The discriminant Delta of a cubic polynomial in the form ax^3+bx^2+cx+d is given by the formula:

Delta = b^2c^2-4ac^3-4b^3d-27a^2d^2+18abcd

In our example, a=1, b=3, c=-5 and d=8, so we find:

Delta = 225+500-864-1728-2160=-4027

Since Delta < 0, this cubic has one Real zero and two non-Real Complex zeros. As a result, Cardano's method will work well.

We can simplify the problem by making the substitution t=x+1:

x^3+3x^2-5x+8

= (x^3+3x^2+3x+1)-8(x+1)+15

=(x+1)^3-8(x+1)+15

= t^3-8t+15

Using Cardano's method, let t=u+v, then we want to solve:

u^3+v^3+(3uv-8)(u+v)+15 = 0

Add the constraint v = 8/(3u) to eliminate the term in (u+v) and get:

u^3+512/(27u^3)+15 = 0

Multiply through by 27u^3 and rearrange slightly to get a quadratic in u^3:

27(u^3)^2+405(u^3)+512 = 0

Use the quadratic formula to find:

u^3=(-405+-sqrt(405^2-4(27)(512)))/(2*27)

=(-405+-sqrt(164025-55296))/54

=(-405+-sqrt(108729))/54

=(-405+-3sqrt(12081))/54

Hence Real zero:

t_1 = root(3)((-405+3sqrt(12081))/54) + root(3)((-405-3sqrt(12081))/54)

= 1/3(root(3)((-405+3sqrt(12081))/2) + root(3)((-405-3sqrt(12081))/2))

and related Complex zeros:

t_2 = 1/3(omega root(3)((-405+3sqrt(12081))/2) + omega^2 root(3)((-405-3sqrt(12081))/2))

t_3 = 1/3(omega^2 root(3)((-405+3sqrt(12081))/2) + omega root(3)((-405-3sqrt(12081))/2))

where omega=-1/2+sqrt(3)/2i is the primitive Complex cube root of 1.

Then x = t-1, hence zeros of f(x):

x_1 = 1/3(-3+root(3)((-405+3sqrt(12081))/2) + root(3)((-405-3sqrt(12081))/2))

x_2 = 1/3(-3+omega root(3)((-405+3sqrt(12081))/2) + omega^2 root(3)((-405-3sqrt(12081))/2))

x_3 = 1/3(-3+omega^2 root(3)((-405+3sqrt(12081))/2) + omega root(3)((-405-3sqrt(12081))/2))