How do you find all the zeros of f(x)=x^3+3x^2-5x+8f(x)=x3+3x2−5x+8?
1 Answer
Use Cardano's method to find Real zero:
x_1 = 1/3(-3+root(3)((-405+3sqrt(12081))/2) + root(3)((-405-3sqrt(12081))/2))x1=13⎛⎝−3+3√−405+3√120812+3√−405−3√120812⎞⎠
and related Complex zeros.
Explanation:
From the rational root theorem we can deduce that the only possible rational zeros are:
+-1, +-2, +-4, +-8±1,±2,±4,±8
None of these work, so there are no rational zeros.
The discriminant
Delta = b^2c^2-4ac^3-4b^3d-27a^2d^2+18abcd
In our example,
Delta = 225+500-864-1728-2160=-4027
Since
We can simplify the problem by making the substitution
x^3+3x^2-5x+8
= (x^3+3x^2+3x+1)-8(x+1)+15
=(x+1)^3-8(x+1)+15
= t^3-8t+15
Using Cardano's method, let
u^3+v^3+(3uv-8)(u+v)+15 = 0
Add the constraint
u^3+512/(27u^3)+15 = 0
Multiply through by
27(u^3)^2+405(u^3)+512 = 0
Use the quadratic formula to find:
u^3=(-405+-sqrt(405^2-4(27)(512)))/(2*27)
=(-405+-sqrt(164025-55296))/54
=(-405+-sqrt(108729))/54
=(-405+-3sqrt(12081))/54
Hence Real zero:
t_1 = root(3)((-405+3sqrt(12081))/54) + root(3)((-405-3sqrt(12081))/54)
= 1/3(root(3)((-405+3sqrt(12081))/2) + root(3)((-405-3sqrt(12081))/2))
and related Complex zeros:
t_2 = 1/3(omega root(3)((-405+3sqrt(12081))/2) + omega^2 root(3)((-405-3sqrt(12081))/2))
t_3 = 1/3(omega^2 root(3)((-405+3sqrt(12081))/2) + omega root(3)((-405-3sqrt(12081))/2))
where
Then
x_1 = 1/3(-3+root(3)((-405+3sqrt(12081))/2) + root(3)((-405-3sqrt(12081))/2))
x_2 = 1/3(-3+omega root(3)((-405+3sqrt(12081))/2) + omega^2 root(3)((-405-3sqrt(12081))/2))
x_3 = 1/3(-3+omega^2 root(3)((-405+3sqrt(12081))/2) + omega root(3)((-405-3sqrt(12081))/2))