How do you find all the zeros of f(x)=x^3+x^2-6xf(x)=x3+x26x?

1 Answer
Jun 17, 2018

Assuming you meant f(x) = 0f(x)=0
x = 0 or 2 or -3x=0or2or3

Explanation:

x^3 + x^2 - 6x = 0x3+x26x=0

x(x^2 +x - 6) = 0x(x2+x6)=0
therefore x = 0, f(x) = 0 (because of the x outside the brackets)

Solve the quadratic
x^2 +x - 6 = 0

Quadratic formula (simplest)

x = (-b +- sqrt(b^2-4ac))/(2a)
x = (-1+- sqrt(1-4*1*-6))/2
x = 2 or -3

Turning points

f'(x) = 3x^2 +2x -6
3x^2 +2x -6 = 0

Quadratic formula (simplest)

x = (-2 +- sqrt(4-4*3*-6))/6

x = (-2+sqrt52)/6 x = (-2 - sqrt52)/6