f(x)=x^4-3.3x^3+2.3x^2+0.6xf(x)=x4−3.3x3+2.3x2+0.6x
= x/10(10x^3-33x^2+23x+6)x10(10x3−33x2+23x+6)
Hence one of the zeros is 00. Another zero could be a factor of 66
As putting x=2x=2 in (10x^3-33x^2+23x+6)(10x3−33x2+23x+6), we get
10*2^3-33*2^2+23*2+6=80-132+46+6=010⋅23−33⋅22+23⋅2+6=80−132+46+6=0
Hence, 22 is another zero and dividing 10x^3-33x^2+23x+610x3−33x2+23x+6 by (x-2)(x−2), we get
10x^3-33x^2+23x+6=(x-2)(10x^2-13x-3)10x3−33x2+23x+6=(x−2)(10x2−13x−3)
or (x-2)(10x^2-15x+2x-3)(x−2)(10x2−15x+2x−3)
or (x-2)(5x(2x-3)+1*(2x-3))(x−2)(5x(2x−3)+1⋅(2x−3))
= (x-2)(5x+1)(2x-3)(x−2)(5x+1)(2x−3)
Hence other zeros are given by 2x-3=02x−3=0 and 5x+1=05x+1=0 i.e. are 3/232 and -1/5−15
Hence zeros of f(x)f(x) are {0,2,3/2,-1/5}{0,2,32,−15}