How do you find all the zeros of f(x)=x^4+5x^3-2x^2-18x-12?

1 Answer
Aug 4, 2016

f(x) has zeros -1, 2, -3-sqrt(3) and -3+sqrt(3)

Explanation:

f(x) = x^4+5x^3-2x^2-18x-12

Note that:

f(-1) = 1-5-2+18-12 = 0

So x=-1 is a zero and (x+1) a factor:

x^4+5x^3-2x^2-18x-12

=(x+1)(x^3+4x^2-6x-12)

Next try substituting x=2 in the remaining cubic to get:

8+4(4)-6(2)-12 = 8+16-12-12 = 0

So x=2 is a zero and (x-2) a factor:

x^3+4x^2-6x-12

=(x-2)(x^2+6x+6)

=(x-2)((x+3)^2-9+6)

=(x-2)((x+3)^2-(sqrt(3))^2)

=(x-2)((x+3)-sqrt(3))((x+3)+sqrt(3))

=(x-2)(x+3-sqrt(3))(x+3+sqrt(3))

Hence zeros x = -3+-sqrt(3)