How do you find all the zeros of f(x)=x^4+5x^3-2x^2-18x-12?
1 Answer
Aug 4, 2016
Explanation:
f(x) = x^4+5x^3-2x^2-18x-12
Note that:
f(-1) = 1-5-2+18-12 = 0
So
x^4+5x^3-2x^2-18x-12
=(x+1)(x^3+4x^2-6x-12)
Next try substituting
8+4(4)-6(2)-12 = 8+16-12-12 = 0
So
x^3+4x^2-6x-12
=(x-2)(x^2+6x+6)
=(x-2)((x+3)^2-9+6)
=(x-2)((x+3)^2-(sqrt(3))^2)
=(x-2)((x+3)-sqrt(3))((x+3)+sqrt(3))
=(x-2)(x+3-sqrt(3))(x+3+sqrt(3))
Hence zeros