How do you find all the zeros of f(x) = x^4 - 9x^3 + 24x^2 - 6x - 40f(x)=x4−9x3+24x2−6x−40?
1 Answer
Explanation:
First notice that if you reverse the signs of the coefficients on the terms of odd degree then the sum is
1+9+24+6-40 = 01+9+24+6−40=0
So
x^4-9x^3+24x^2-6x-40 = (x+1)(x^3-10x^2+34x-40)x4−9x3+24x2−6x−40=(x+1)(x3−10x2+34x−40)
Let
By the rational root theorem, any rational zeros of
That means that the only possible rational zeros are:
+-1±1 ,+-2±2 ,+-4±4 ,+-5±5 ,+-8±8 ,+-10±10 ,+-20±20 ,+-40±40
In addition, note the
So the only possible rational zeros of
1, 2, 4, 5, 8, 10, 20, 401,2,4,5,8,10,20,40
We find:
g(4) = 64-160+136-40 = 0g(4)=64−160+136−40=0
So
x^3-10x^2+34x-40x3−10x2+34x−40
=(x-4)(x^2-6x+10)=(x−4)(x2−6x+10)
The remaining quadratic factor has negative discriminant, so its zeros are Complex, but we can factor it as a difference of squares:
x^2-6x+10x2−6x+10
=(x-3)^2-9+10=(x−3)2−9+10
=(x-3)^2+1=(x−3)2+1
=(x-3)^2-i^2=(x−3)2−i2
=((x-3)-i)((x-3)+i)=((x−3)−i)((x−3)+i)
=(x-3-i)(x-3+i)=(x−3−i)(x−3+i)
So the remaining zeros are:
x = 3+-ix=3±i