How do you find all the zeros of g(x)= - 2x^3+5x^2-6x-10g(x)=2x3+5x26x10?

1 Answer
Aug 11, 2016

Use Cardano's method to find Real zero:

x_1 = 1/6(5+root(3)(685+6sqrt(13071))+root(3)(685-6sqrt(13071)))x1=16(5+3685+613071+3685613071)

and related Complex zeros.

Explanation:

g(x) = -2x^3+5x^2-6x-10g(x)=2x3+5x26x10

color(white)()
Descriminant

The discriminant Delta of a cubic polynomial in the form ax^3+bx^2+cx+d is given by the formula:

Delta = b^2c^2-4ac^3-4b^3d-27a^2d^2+18abcd

In our example, a=-2, b=5, c=-6 and d=-10, so we find:

Delta = 900-1728+5000-10800-10800 = -17428

Since Delta < 0 this cubic has 1 Real zero and 2 non-Real Complex zeros, which are Complex conjugates of one another.

color(white)()
Tschirnhaus transformation

To make the task of solving the cubic simpler, we make the cubic simpler using a linear substitution known as a Tschirnhaus transformation.

0=-108g(x)=216x^3-540x^2+648x+1080

=(6x-5)^3+33(6x-5)+1370

=t^3+33t+1370

where t=(6x-5)

color(white)()
Cardano's method

We want to solve:

t^3+33t+1370=0

Let t=u+v.

Then:

u^3+v^3+3(uv+11)(u+v)+1370=0

Add the constraint v=-11/u to eliminate the (u+v) term and get:

u^3-1331/u^3+1370=0

Multiply through by u^3 and rearrange slightly to get:

(u^3)^2+1370(u^3)-1331=0

Use the quadratic formula to find:

u^3=(-1370+-sqrt((1370)^2-4(1)(-1331)))/(2*1)

=(1370+-sqrt(1876900+5324))/2

=(1370+-sqrt(1882224))/2

=(1370+-12sqrt(13071))/2

=685+-6sqrt(13071)

Since this is Real and the derivation is symmetric in u and v, we can use one of these roots for u^3 and the other for v^3 to find Real root:

t_1=root(3)(685+6sqrt(13071))+root(3)(685-6sqrt(13071))

and related Complex roots:

t_2=omega root(3)(685+6sqrt(13071))+omega^2 root(3)(685-6sqrt(13071))

t_3=omega^2 root(3)(685+6sqrt(13071))+omega root(3)(685-6sqrt(13071))

where omega=-1/2+sqrt(3)/2i is the primitive Complex cube root of 1.

Now x=1/6(5+t). So the zeros of our original cubic are:

x_1 = 1/6(5+root(3)(685+6sqrt(13071))+root(3)(685-6sqrt(13071)))

x_2 = 1/6(5+omega root(3)(685+6sqrt(13071))+omega^2 root(3)(685-6sqrt(13071)))

x_3 = 1/6(5+omega^2 root(3)(685+6sqrt(13071))+omega root(3)(685-6sqrt(13071)))