How do you find all the zeros of g(x) = 9x^3- 7x^2 + 10x - 4g(x)=9x3−7x2+10x−4?
1 Answer
Use Cardano's method to find Real zero:
x_1 = 1/27(7+root(3)(-1882+81sqrt(2185))+root(3)(-1882-81sqrt(2185)))x1=127(7+3√−1882+81√2185+3√−1882−81√2185)
and related Complex zeros.
Explanation:
g(x) = 9x^3-7x^2+10x-4g(x)=9x3−7x2+10x−4
Descriminant
The discriminant
Delta = b^2c^2-4ac^3-4b^3d-27a^2d^2+18abcd
In our example,
Delta = 4900-36000-5488-34992+45360 = -26220
Since
Tschirnhaus transformation
To make the task of solving the cubic simpler, we make the cubic simpler using a linear substitution known as a Tschirnhaus transformation.
0=2187g(x)=19683x^3-15309x^2+21870x-8748
=(27x-7)^3+663(27x-7)-3764
=t^3+663t-3764
where
Cardano's method
We want to solve:
t^3+663t-3764=0
Let
Then:
u^3+v^3+3(uv+221)(u+v)-3764=0
Add the constraint
u^3-10793861/u^3-3764=0
Multiply through by
(u^3)^2-3764(u^3)-10793861=0
Use the quadratic formula to find:
u^3=(3764+-sqrt((-3764)^2-4(1)(-10793861)))/(2*1)
=(-3764+-sqrt(14167696+43175444))/2
=(-3764+-sqrt(57343140))/2
=(-3764+-162(2185))/2
=-1882+-81(2185)
Since this is Real and the derivation is symmetric in
t_1=root(3)(-1882+81sqrt(2185))+root(3)(-1882-81sqrt(2185))
and related Complex roots:
t_2=omega root(3)(-1882+81sqrt(2185))+omega^2 root(3)(-1882-81sqrt(2185))
t_3=omega^2 root(3)(-1882+81sqrt(2185))+omega root(3)(-1882-81sqrt(2185))
where
Now
x_1 = 1/27(7+root(3)(-1882+81sqrt(2185))+root(3)(-1882-81sqrt(2185)))
x_2 = 1/27(7+omega root(3)(-1882+81sqrt(2185))+omega^2 root(3)(-1882-81sqrt(2185)))
x_3 = 1/27(7+omega^2 root(3)(-1882+81sqrt(2185))+omega root(3)(-1882-81sqrt(2185)))