How do you find all the zeros of g(x) = 9x^3- 7x^2 + 10x - 4g(x)=9x37x2+10x4?

1 Answer
Aug 11, 2016

Use Cardano's method to find Real zero:

x_1 = 1/27(7+root(3)(-1882+81sqrt(2185))+root(3)(-1882-81sqrt(2185)))x1=127(7+31882+812185+31882812185)

and related Complex zeros.

Explanation:

g(x) = 9x^3-7x^2+10x-4g(x)=9x37x2+10x4

color(white)()
Descriminant

The discriminant Delta of a cubic polynomial in the form ax^3+bx^2+cx+d is given by the formula:

Delta = b^2c^2-4ac^3-4b^3d-27a^2d^2+18abcd

In our example, a=9, b=-7, c=10 and d=-4, so we find:

Delta = 4900-36000-5488-34992+45360 = -26220

Since Delta < 0 this cubic has 1 Real zero and 2 non-Real Complex zeros, which are Complex conjugates of one another.

color(white)()
Tschirnhaus transformation

To make the task of solving the cubic simpler, we make the cubic simpler using a linear substitution known as a Tschirnhaus transformation.

0=2187g(x)=19683x^3-15309x^2+21870x-8748

=(27x-7)^3+663(27x-7)-3764

=t^3+663t-3764

where t=(27x-7)

color(white)()
Cardano's method

We want to solve:

t^3+663t-3764=0

Let t=u+v.

Then:

u^3+v^3+3(uv+221)(u+v)-3764=0

Add the constraint v=-221/u to eliminate the (u+v) term and get:

u^3-10793861/u^3-3764=0

Multiply through by u^3 and rearrange slightly to get:

(u^3)^2-3764(u^3)-10793861=0

Use the quadratic formula to find:

u^3=(3764+-sqrt((-3764)^2-4(1)(-10793861)))/(2*1)

=(-3764+-sqrt(14167696+43175444))/2

=(-3764+-sqrt(57343140))/2

=(-3764+-162(2185))/2

=-1882+-81(2185)

Since this is Real and the derivation is symmetric in u and v, we can use one of these roots for u^3 and the other for v^3 to find Real root:

t_1=root(3)(-1882+81sqrt(2185))+root(3)(-1882-81sqrt(2185))

and related Complex roots:

t_2=omega root(3)(-1882+81sqrt(2185))+omega^2 root(3)(-1882-81sqrt(2185))

t_3=omega^2 root(3)(-1882+81sqrt(2185))+omega root(3)(-1882-81sqrt(2185))

where omega=-1/2+sqrt(3)/2i is the primitive Complex cube root of 1.

Now x=1/27(7+t). So the zeros of our original cubic are:

x_1 = 1/27(7+root(3)(-1882+81sqrt(2185))+root(3)(-1882-81sqrt(2185)))

x_2 = 1/27(7+omega root(3)(-1882+81sqrt(2185))+omega^2 root(3)(-1882-81sqrt(2185)))

x_3 = 1/27(7+omega^2 root(3)(-1882+81sqrt(2185))+omega root(3)(-1882-81sqrt(2185)))