How do you find all the zeros of x3−x2+2x+1?
1 Answer
Explanation:
Premultiply by
0=33(x3−x2+2x+1)
=27x3−27x2+54x+27
=(3x−1)3+15(3x−1)+43
Let
t3+15t+43=0
Using Cardano's method, let
u3+v3+3(uv+5)(u+v)+43=0
Let
u3−53u3+43=0
Multiply through by
(u3)2+43(u3)−125=0
Use the quadratic formula to find:
u3=−43±√432+(4⋅125)2
=−43±√1849+5002
=−43±√23492
=−43±9√292
The derivation was symmetric in
t1=3√−43+9√292+3√−43−9√292
and Complex roots:
t2=ω3√−43+9√292+ω23√−43−9√292
t3=ω23√−43+9√292+ω3√−43−9√292
where
Then
x1=13⎛⎝1+3√−43+9√292+3√−43−9√292⎞⎠
x2=13⎛⎝1+ω3√−43+9√292+ω23√−43−9√292⎞⎠
x3=13⎛⎝1+ω23√−43+9√292+ω3√−43−9√292⎞⎠