How do you find all zeros of f(x)=x^5+x^3-6xf(x)=x5+x36x?

1 Answer
Jan 12, 2017

The zeros of f(x)f(x) are: 0, +-sqrt2, +-sqrt3 i0,±2,±3i

Explanation:

f(x) = x^5+x^3-6xf(x)=x5+x36x

The zeros of f(x)f(x) are the values of xx where f(x) = 0f(x)=0

That is where: x^5+x^3-6x =0x5+x36x=0

x(x^4+x^2-6) = 0x(x4+x26)=0

Hence x=0x=0 or x^4+x^2-6 =0x4+x26=0

Let z=x^2z=x2

:. z^2 +z -6 =0

(z+3)(z-2)=0

-> z= 2 or -3

:. x=+-sqrt2 or +-sqrt3 i

The zeros of f(x) are: 0, +-sqrt2, +-sqrt3 i