How do you find all zeros of the function f(x)= 3x^3-2x^2+x+2f(x)=3x3−2x2+x+2?
1 Answer
Find Real zero:
x_1 = 1/9(2+root(3)(-262+9sqrt(849))+root(3)(-262-9sqrt(849)))x1=19(2+3√−262+9√849+3√−262−9√849)
and related non-Real Complex zeros using Cardano's method.
Explanation:
f(x) = 3x^3-2x^2+x+2f(x)=3x3−2x2+x+2
Rational root theorem
By the rational root theorem, any rational zeros of
That means that the only possible rational zeros are:
+-1/3±13 ,+-2/3±23 ,+-1±1 ,+-2±2
None of these work, so
Discriminant
The discriminant
Delta = b^2c^2-4ac^3-4b^3d-27a^2d^2+18abcd
In our example,
Delta = 4-12+64-972-216=-1132
Since
Cardano's method
We can use Cardano's method to find the zeros, but first we need to simplify the form of the cubic by premultiplying by
243 f(x) = 243(3x^3-2x^2+x+2)
= 729x^3-486x^2+243x+486
= (9x-2)^3+15(9x-2)+524
Let
We want to solve:
t^3+15t+524 = 0
Let
Then:
u^3+v^3+3(uv+5)(u+v)+524=0
Add the constraint:
v = -5/u
to eliminate the term in
u^3-125/u^3+524 = 0
Multiply through by
(u^3)^2+524(u^3)-125 = 0
Use the quadratic formula to find roots:
u^3=(-524+-sqrt(524^2-4(1)(-125)))/2
=(-524+-sqrt(274576+500))/2
=(-524+-sqrt(275076))/2
=(-524+-18sqrt(849))/2
=-262+-9sqrt(849)
Since these roots are Real and the derivation was symmetrical in
t_1 = root(3)(-262+9sqrt(849))+root(3)(-262-9sqrt(849))
and corresponding Complex roots:
t_2 = omega root(3)(-262+9sqrt(849))+omega^2 root(3)(-262-9sqrt(849))
t_3 = omega^2 root(3)(-262+9sqrt(849))+omega root(3)(-262-9sqrt(849))
where
Hence zeros for the original cubic:
x_1 = 1/9(2+root(3)(-262+9sqrt(849))+root(3)(-262-9sqrt(849)))
x_2 = 1/9(2+omega root(3)(-262+9sqrt(849))+omega^2 root(3)(-262-9sqrt(849)))
x_3 = 1/9(2+omega^2 root(3)(-262+9sqrt(849))+omega root(3)(-262-9sqrt(849)))