How do you find all zeros of the function P(x)=2x^3-5x^2+6x-2P(x)=2x3−5x2+6x−2 given the zero 1+i?
1 Answer
Jul 16, 2016
Zeros:
Explanation:
We are told that
Since the coefficients of
(x-(1-i))(x-(1+i))(x−(1−i))(x−(1+i))
= ((x-1)-i)((x-1)+i)=((x−1)−i)((x−1)+i)
= (x-1)^2-i^2=(x−1)2−i2
= x^2-2x+2=x2−2x+2
We find:
2x^3-5x^2+6x-2 = (x^2-2x+2)(2x-1)2x3−5x2+6x−2=(x2−2x+2)(2x−1)
So the remaining zero is