How do you find all zeros of the function P(x)=2x^3-5x^2+6x-2P(x)=2x35x2+6x2 given the zero 1+i?

1 Answer
Jul 16, 2016

Zeros: 1+i1+i, 1-i1i, 1/212

Explanation:

P(x) = 2x^3-5x^2+6x-2P(x)=2x35x2+6x2

We are told that x=1+ix=1+i is a zero.

Since the coefficients of P(x)P(x) are all Real, the Complex conjugate 1-i1i must be a zero too. So P(x)P(x) must be divisible by:

(x-(1-i))(x-(1+i))(x(1i))(x(1+i))

= ((x-1)-i)((x-1)+i)=((x1)i)((x1)+i)

= (x-1)^2-i^2=(x1)2i2

= x^2-2x+2=x22x+2

We find:

2x^3-5x^2+6x-2 = (x^2-2x+2)(2x-1)2x35x2+6x2=(x22x+2)(2x1)

So the remaining zero is x=1/2x=12