How do you find all zeros with multiplicities of f(x)=2x^4-7x^2+6f(x)=2x47x2+6?

1 Answer
May 28, 2017

See explanation.

Explanation:

The original equation can be transformed to a quadratic equation by a substitution: x^2=tx2=t

2t^2-7t+6=02t27t+6=0

Delta=(-7)^2-4*2*6=49-48=1

sqrt(Delta)=1

t_1=(7-1)/4=3/2 and t_2=(7+1)/4=2

Now we have to find corresponding x values:

x^2=3/2

x_1=-sqrt(3/2) and x_2=sqrt(3/2)

If we rationalize the denominators we get:

x_1=-sqrt(6)/2 and x_2=sqrt(6)/2

x^2=2

x_3=-sqrt(2) and x_4=-sqrt(2)

Final answer:

The function has 4 real zeros:

x_1=-sqrt(6)/2, x_2=sqrt(6)/2, x_3=-sqrt(2), x_4=-sqrt(2)