How do you find all zeros with multiplicities of f(x)=36x4−12x3−11x2+2x+1?
1 Answer
Explanation:
Given:
f(x)=36x4−12x3−11x2+2x+1
By the rational roots theorem, any rational zeros of
That means that the only possible rational zeros are:
±136,±118,±112,±19,±16,±14,±13,±12,±1
Note that
f(12)=36(12)4−12(12)3−11(12)2+2(12)+1
f(12)=3616−128−114+22+1
f(12)=9−6−11+4+44
f(12)=0
So
36x4−12x3−11x2+2x+1=(2x−1)(18x3+3x2−4x−1)
Trying
18(12)3+3(12)2−4(12)−1=188+34−42−1
18(12)3+3(12)2−4(12)−1=9+3−8−44
18(12)3+3(12)2−4(12)−1=0
So
18x3+3x2−4x−1=(2x−1)(9x2+6x+1)
18x3+3x2−4x−1=(2x−1)(3x+1)2
So the remaining zero is
How did I get from
Note that
graph{36x^4-12x^3-11x^2+2x+1 [-1.2, 1.2, -0.74, 1.76]}