How do you find all zeros with multiplicities of f(x)=3x4−14x2−5?
1 Answer
Feb 13, 2017
x=±√33i
x=±√5
Explanation:
f(x)=3x4−14x2−5
f(x)=(3x4−15x2)+(x2−5)
f(x)=3x2(x2−5)+1(x2−5)
f(x)=(3x2+1)(x2−5)
f(x)=((√3x)2−i2)(x2−(√5)2)
f(x)=(√3x−i)(√3x+i)(x−√5)(x+√5)
Hence zeros:
x=±i√3=±√33i
x=±√5