How do you find all zeros with multiplicities of f(x)=3x414x25?

1 Answer
Feb 13, 2017

x=±33i

x=±5

Explanation:

f(x)=3x414x25

f(x)=(3x415x2)+(x25)

f(x)=3x2(x25)+1(x25)

f(x)=(3x2+1)(x25)

f(x)=((3x)2i2)(x2(5)2)

f(x)=(3xi)(3x+i)(x5)(x+5)

Hence zeros:

x=±i3=±33i

x=±5