How do you find all zeros with multiplicities of f(x)=9x3−5x2−x?
1 Answer
Aug 11, 2018
all with multiplicity
Explanation:
0=36f(x)
0=36(9x3−5x2−x)
0=x(324x2−180x−36)
0=x((18x)2−2(18x)(5)+25−61)
0=x((18x−5)2−(√61)2)
0=x(18x−5−√61)(18x−5+√61)
Hence:
x=0
or:
18x=5±√61 sox=518±√6118